Adding an MCP23017 16 port IO expander to Arduino or Esp8266 or Attiny85 or……..


Update:
After I made this expander module, a ready made module
with this chip has become available. So I actually would advice anybody needing a 16 bit expander, to buy that one rather than build it. The module will cost you abt 1.50 euro, while the individual chip may set you back a euro or so.

I am not claiming that what I am describing here is earth shattering or trailblazing, because in fact it is very simple and no doubt has been done by many already. But sometimes what is simple for the one, is still a question mark for the other, so here is quick ‘how-to’ of adding 16 I/O ports to your microprocessor. This is especially handy when working with a chip like the ESP8266 that has only limited I/O
The MCP23017 is an I2C enabled 16 I/O port chip. That means that you only need 2 pins (yes with Vcc and ground it makes 4) to control the chip and the added advantage is that you can share I2C with various other devices as well.

The 16 I/O lines are divided into an 8 I/O PORT A and an 8 I/O PORT B. Both can be used as input as well as output. The chip also has 2 configurable interrupts (that I will not be using). The physical layout of the chip makes it quite easy to use it on a piece of strip board.

The circuit (at right) is rather simple. At a last moment I decided to leave out the pull up resistors so it would be more flexible to use together with other I/O devices. The 3 Address pins A0-A2 determine the I2C address that ranges from 0x20 (all pins on ground) to 0x27 (all pins on Vcc).
The chip  can take a Vcc from 2.7V to 5V and this is perfect for 3.3 Volt devices as  the modern arduino’s and the ESP8266 range of boards.

Using the chip in a program is fairly easy. There are good libraries available, but it might help if you know how to program the chip without a library.
In my case I have all  address lines tied to ground and therefore my I2C address is 0x20. Suppose I want to use all PORT A lines as outputs. I do that  as follows:

Wire.beginTransmission(0x20);
Wire.write(0x00); // IODIRA register
Wire.write(0x00); // set entire PORT A to output
Wire.endTransmission();

For PORT B that  is rather similar:

Wire.beginTransmission(0x20);
Wire.write(0x01); // IODIRB register
Wire.write(0x00); // set entire PORT B to output
Wire.endTransmission();

If we then want to send a specific value ‘X’ to that PORT A, we do that as follows

Wire.beginTransmission(0x20);
Wire.write(0x12); // address port A
Wire.write(X);  // value to send
Wire.endTransmission();

‘X’ ofcourse is a byte value that determines whether we set a specific port HIGH or LOW.
If for instance ‘X’is ‘0’ that means we write a LOW to all PORT A outputs. If it is 255 that means we write a HIGH to all PORT A outputs.
To determine what value to send, consider the 8 I/O lines of PORT A as a byte in which the individual bits determine HIGH or LOW.
So if we only want to make PORTA.0 HIGH and the rest LOW, we write a binary value of 0b00000001 =1 to the A register. If we want to make PORTA.0 and PORTA.2 HIGH and the rest LOW we write a binary value of 0b00000101 = 5.
For PORT B it is similar:

Wire.beginTransmission(0x20);
Wire.write(0x13); // address PORT B
Wire.write(X);  // value to send
Wire.endTransmission();

If we want to use PORT B (or PORT A for that matter) as input, we do that as follows:

Wire.beginTransmission(0x20);
Wire.write(0x13); // address PORT B
Wire.endTransmission();
Wire.requestFrom(0x20, 1); // request one byte of data
byte input=Wire.read(); // store incoming byte into "input"

The byte “input” will vary between 0 and 255, in which the individual bits determine the input on the corresponding IO line. So if ‘input’  reads ‘3’  which in binary is 0b00000011, that means that both IO line 0 and 1  were HIGH and the rest LOW

#include <Wire.h> // Wire.h
byte input=0;
void setup()
{
  Serial.begin(9600);
  Wire.begin(); // wake up I2C bus
  Wire.beginTransmission(0x20);
  Wire.write(0x00); // IODIRA register
  Wire.write(0x00); // set entire PORT A as output
  Wire.endTransmission();
}
 
void loop()
{
  // read the inputs of bank B
  Wire.beginTransmission(0x20);
  Wire.write(0x13);
  Wire.endTransmission();
  Wire.requestFrom(0x20, 1);
  input=Wire.read();
 
  // now send the input data to bank A
  Wire.beginTransmission(0x20);
  Wire.write(0x12); // address PORT A
  Wire.write(input);    // PORT A
  Wire.endTransmission();
  delay(100); // for debounce
}

That’s basically it if you want to do the adressing yourself. Using a library, such as the one from Adafruit, makes it much easier though as it has commands to write and read from individual IO lines. One of the example programs to read a single button, looks  for instance like this:

#include <Wire.h> // Wire.h
#include "Adafruit_MCP23017.h"

// Basic pin reading and pullup test for the MCP23017 I/O expander
// public domain!
// Connect pin #12 of the expander to Analog 5 (i2c clock)
// Connect pin #13 of the expander to Analog 4 (i2c data)
// Connect pins #15, 16 and 17 of the expander to ground (address selection)
// Connect pin #9 of the expander to 5V (power)
// Connect pin #10 of the expander to ground (common ground)
// Connect pin #18 through a ~10kohm resistor to 5V (reset pin, active low)
// Input #0 is on pin 21 so connect a button or switch from there to ground

Adafruit_MCP23017 mcp;

void setup() 
{
mcp.begin();      // use default address 0
mcp.pinMode(0, INPUT);
mcp.pullUp(0, HIGH);  // turn on a 100K pullup internally
pinMode(13, OUTPUT);  // use the p13 LED as debugging
}

void loop() {
// The LED will 'echo' the button
digitalWrite(13, mcp.digitalRead(0));
}

If you want to use more than one MCP23017 do that as follows:

#define addr1 0 //addr1 =A2 low , A1 low , A0 low =000
#define addr2 1 //addr 2 = A2 low , A1 low , A0 high =001 
setup(){
    mcp1.begin(addr1);
    mcp2.begin(addr2);
}

Mind you that “0” is in fact 0x20 and ‘1’ is in fact 0x21

Advertisements

Adding a PCF 8591 ADC/DAC to ESP8266-01

ad-da-converter-module
YL-40 module

The ESP8266-01 is a great WiFi enabled  microcontroller but it only has 4 I/O pins broken out. Fortunately it does support I2C protocol so in spite of  the low number of pins, there still is a lot of hardware that can be added.
As the ESP8266-01 has no analog inputs at all, adding an ADC to it is something I wanted to do. After all,  sensors as LDR or NTC are still analog.
The PCF8591 is such an ADC: it is  a single-chip, single‑supply low‑power 8‑bit CMOS data acquisition device with four analog inputs, one analog output and a serial I²C‑bus interface. Three address pins A0, A1 and A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the I²C‑bus without additional hardware. I doubt whether I need more than 8 of those chips. Lets just start with one. Although one can get the individual chip, I have chosen for a module that actually already has some sensors on it:

  • AIN0 – Jumper P5 – Light Dependent Resistor (LDR)
  • AIN1 – Jumper P4 – Thermistor
  • AIN2 – Not connected
  • AIN3 – Jumper P6 – Potentiometer
pcf8591-circ
YL-40 circuit

The I2C address of the PCF8591 is determined by the pins A0-A2. As they are close to the Ground pin, let’s start with grounding them (as they are on the module).
pcf8591adresThe address is 1001A2A1A0. With A2-A0 being LOW, that is 1001000=0x48.

base A2A1A0 Hex Dec
1001 000 48 72
1001 001 49 73
1001 010 4A 74
1001 011 4B 75
1001 100 4C 76
1001 101 4D 77
1001 110 4E 78
1001 111 4F 79

In some programs you will see the address as “0x90>>1” Which is 48 as well. The “0x90” counts the LSB of the 8 bit address, which is the R/W bit. With the Write Bit Low (=active) the full address is 10010000=0x90, but the rightshift 1 removes the LSB again, making it 0x48.
The module is hard connected to 0x48 as the three address lines are soldered to ground. So if you would want to use more than one module on the same I2C port you would need to do some de-soldering (or use   bare PCF8591 chips ofcourse).

Mini PCF8591 AD DA Shell Module

There is a (more expensive)  fully configurable module, that allows to set the  I2C address with jumpers. That module is daisy chainable with other I2C modules in the same range (there is for example a PCF8547 digital I/O module with similar connections)

The control byte sets the operating mode of the PCF8591 and is described in section 7.2 of the datasheet, The upper nibble of the control register is used for enabling the analog output, and for programming the analog inputs as single-ended or differential inputs.
The lower nibble selects one of the analog input channels defined by the upper nibble. If the auto-increment flag is set the channel number is incremented automatically after each A/D conversion.
If the auto-increment mode is desired in applications where the internal oscillator is used, the analog output enable flag in the control byte (bit 6) should be set. This allows the internal oscillator to run continuously, thereby preventing conversion errors resulting from oscillator start-up delay. The analog output enable flag may be reset at other times to reduce quiescent power consumption.

As it is not my intention to explain the full innerworkings of the PCF8591, but just to show it is working with the ESP8266-01, I will skip a full technical discussion. For now it is enough to know that the PCF8591 can be read byte for byte, but it can also be read in ‘burst mode’, in which we read the 4 analog values all at once. The program I present is burstmode with autoincrement of the address. The reason we read 5 bytes instead of 4 is because the first byte contains old data. As the datasheet states in paragraph 8.4: “The first byte transmitted in a read cycle contains the conversion result code of the previous read cycle.”

#include "Wire.h"
int PCF8591=0x48; // I2C bus address
byte ana0, ana1, ana2, ana3;
void setup()
{
 Wire.pins(0,2);// just to make sure
 Wire.begin(0,2);// the SDA and SCL
}
void loop()
{
 Wire.beginTransmission(PCF8591); // wake up PCF8591
 Wire.write(0x04); // control byte: reads ADC0 then auto-increment
 Wire.endTransmission(); // end tranmission
 Wire.requestFrom(PCF8591, 5);
 ana0=Wire.read();// throw this one away
 ana0=Wire.read();
 ana1=Wire.read();
 ana2=Wire.read();
 ana3=Wire.read();
}

Obviously when you have these values read you will need to do something with them: print them out, put them on yr own webpage or upload them to e.g. Thingspeak. As printing from the ESP8266-01  is not always easy, I will show you how to upload the values to Thingspeak:

#include  // ESP8266WiFi.h library
#include "Wire.h"
int PCF8591=0x48; // I2C bus address
byte ana0, ana1, ana2, ana3;

const char* ssid     = "YourNetworkSSID";
const char* password = "YourPassword";
const char* host = "api.thingspeak.com";
const char* writeAPIKey = "YourWriteAPI";

void setup() {
  // Initialize sensor
 Wire.pins(0,2);// just to make sure
 Wire.begin(0,2);// the SDA and SCL

//  Connect to WiFi network
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
  }
}

void loop() {
 Wire.beginTransmission(PCF8591); // wake up PCF8591
 Wire.write(0x04); // control byte: reads ADC0 then auto-increment
 Wire.endTransmission(); // end tranmission
 Wire.requestFrom(PCF8591, 5);
 ana0=Wire.read();
 ana0=Wire.read();
 ana1=Wire.read();
 ana2=Wire.read();
 ana3=Wire.read();

// make TCP connections
  WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
    return;
  }

  String url = "/update?key=";
  url+=writeAPIKey;
  url+="&field1=";
  url+=String(ana0);
  url+="&field2=";
  url+=String(ana1);
  url+="&field3=";
  url+=String(ana2);
  url+="&field3=";
  url+=String(ana3);
  url+="\r\n";
  
  // Request to the server
  client.print(String("GET ") + url + " HTTP/1.1\r\n" +
               "Host: " + host + "\r\n" + 
               "Connection: close\r\n\r\n");
    delay(1000);
}

DAC
The PCF8591 does not only have  4 ADC channels but also 1 DAC channel. Writing to the DAC is as follows:

#define PCF8591 (0x48) // I2C bus address
void setup()
{
 Wire.pins(0,2);// just to make sure
 Wire.begin(0,2);
}
void loop()
{
 for (int i=0; i=0; --i)
 {
 Wire.beginTransmission(PCF8591); // wake up PCF8591
 Wire.write(0x40); // turn on DAC b1000000
 Wire.write(i); 
 Wire.endTransmission();
 }
}

Calculations
A the board normally uses the 3.3v supply as the reference voltage:
The input voltage is determined with:
vIn = value * (3.3 / 255)
and the output voltage is:
vOut = (value / 255) * 3.3
or to find the value for a given voltage:
value = (vOut / 3.3) * 255

So if for instance I would write  the value of 50 to the DAC. The voltage would be: 0.64V
In order to test that, I hooked up Aout to the A0 of an ESP 8266-12 and found a value of 192.
To calculate that to a voltage that is  (192/1023)*3.3=0.162V. I guess that is close enough.
Oddly though when I hooked up the Aout to AIN2 or AIN1 that didn seem to give reliable readings. A value of 50 written to Aout should give a value of 50 on AIN, but oddly it didnt

In my version of the board the NTC channel only varied between 255 and 254, changing the temperatuur didnt seem to have any influence, but removing jumper P4 made the value go all over the place so i presume the channel is ok, and only the NTC might not be OK.

Differential Input
The PCF8591 is capable of more, it is  for instance possible to do differential measurements.
Suppose you want to  measure the difference between AIN0 and AIN1.
You do that as follows:

#include "Wire.h"
int PCF8591=0x48; // I2C bus address 
int Raw = 0;
float Voltage = 0.0;

void setup()
{
 Wire.pins(0,2);// just to make sure
 Wire.begin(0,2);
  Serial.begin(9600); //Not on an ESP8266-01 
  Wire.beginTransmission(PCF8591); // Wake up PCF8591
  Wire.write(0x11); // control Byte for differential input mode 
  Wire.endTransmission(); //
}
void loop()
{
  Wire.requestFrom(PCF8591, 1); // Get Data from channel 1

 RawValue=Wire.read();
 Voltage = (Raw * 3.3 )/ 255.0;
 Serial.print("Raw ADC = ");
 Serial.print(Raw);
 Serial.print(" Voltage = ");
 Serial.println(Voltage,3);
 delay(1000);
}

If you want to hook up this chip to a Raspbery Pi, have a look here.
There are other ways of expanding the ADC capabilities of the ESP8266:

 

Using the 4 pins of the ESP8266-01

esp8266_henhouseThe limited number (4) of GPIO pins on the ESP8266-01 may seem like an obstacle, for any serious application.

Yet if one uses the pins in a smart way it is very well possible to do a lot with only those 4 pins.
In some of my recent postings, I have shown the use of a DHT11 a DS18B20, an OLED, an RTC and a BMP180 with the ESP8266-01.
In this posting I set out to use 4 sensors and a display, while also uploading the acquired data to Thingspeak. It actually is expanding on a project of monitoring the atmosphere in and around my chicken coop. Yes, you could call this a weatherstation, but it is just to illustrate the use of the 4 pins, you could easily make something else this way

I will be using 2 pins for I2C (BMP180 and OLED)
1 pin for 2 DS18B20 sensors via the OneWire protocol
1 pin for the DHT11
Although the ESP8266-01 now has all its pins used, I can still add more sensors (or actuators) through the OneWire protocol and/or via the I2C protocol.

So, what do we need:
BOM

  • ESP8266-01
  • 2x DS18B20
  • 1x DHT11
  • 1x BMP180
  • OLED (optional)

and ofcourse a breadboard, a 3.3 V PSU and some breadboard wires and a Thingspeak acount

Just some remarks regarding the BOM:

  • ESP8266-01
    Obviously the project is about utilizing the limited pins of the ESP8266-01, but if you still need to buy one, you could consider an ESP8266-12 that has more pins
  • DHT11
    A cheap all purpose humidity and temperature sensor. It is not hugely accurate but it will do. If you still need to buy one, you could opt for the DHT22 that is supposedly more accurate, but you could also opt for the AMS2321. That is a sort of DHT22 that is suitable for I2C, thus freeing another pin
  • BMP180
    measures temperature and Airpressure. It is the successor of the BMP085, but it also now has some successors itself. There is the (cheaper) BMP280, but you could also opt for the BME280 that measures temperature, airpresure AND humidity. That way you can save on the DHT/AMS sensor
  • OLED
    I just used that so I quickly could see whether the sensors were read, but you could just as well check it on Thingspeak. The OLED is too small anyway to print all the read values

The circuit

weerstationThe 4 pins of the ESP8266 are not indicated as such on the PCB, and most images only clearly state GPIO0 and GPIO2.
However the ESP826-01 has a a GPIO1 pin (the Tx pin) and a GPIO3 pin (the Rx pin).
i will be using those pins as follows

  • GPIO0 -> SDA pin of the I2C port
  • GPIO1 ->DHT11
  • GPIO2-> SCL pin of the I2C port
  • GPIO3-> OneWire Bus

As my I2C modules already have pull up resistors, I will not add any I2C pullup resistors there. The DS18B20 still needs a pull up resistor for which I used a 4k7, but it is really not that critical, a 10k is also good. The DHT11 supposedly also needs a pull-up resistor but I found it to work without one as well. adding a 4k7 resistor didnt change any of the readings, so I left it out. Many of the 3 pin DHT11 modules, already have a 10 k soldered onto the module.

I just realized that I didnt draw the connections for the OLED. That is because I only hooked it up for a quick check, but should you want to add it, it is just a matter of connecting SDA to SDA and SCL to SCL… and ofcourse the ground and Vcc pins to their counterparts

The program is quite straightforward. First it sets up the libraries and the sensors.
It attaches the DHT11 to pin 1 (Tx) and the OnWire bus for the DS18B20 to pin 3 (Rx). In order to use more than 1 DS18B20 sensor on the OneWire bus, you need to know their ‘unique adress’. If you do not have that then you need a program to read those addresses. Do that on an arduino for ease.

In the program you still have to provide your WiFi credentials as well as the write API for your Thingspeak Channel

 

/*
   Field 1 temp roost (DHT11)
   Field 2 humidity roost (DHT11)
   field 3 Coop temperature (DS18B20)
   field 4 soil temperature (DS18B20)
   field 5 Airpressure (bmp180)
   field 6 Outside temperature (bmp180)
 * */
#include <DHT.h>
#include  <OneWire.h>//  http://www.pjrc.com/teensy/td_libs_OneWire.html
#include <DallasTemperature.h> //   http://milesburton.com/Main_Page?title=Dallas_Tem...
#include <Adafruit_BMP085.h>
#include <ESP8266WiFi.h>
#include "SSD1306.h"
SSD1306  display(0x3c, 0, 2);

#define DHTPIN 1  //GPIO1 (Tx)
#define DHTTYPE  DHT11
#define ONE_WIRE_BUS 3 // GPIO3=Rx

const char* ssid     = "YourSSID";
const char* password = "YourPassword";
const char* host = "api.thingspeak.com";
const char* writeAPIKey = "W367812985"; //use YOUR writeApi

//DHT11 stuff
float temperature_buiten;
float temperature_buiten2;
DHT dht(DHTPIN, DHTTYPE, 15);

//DS18b20 stuff
OneWire oneWire(ONE_WIRE_BUS); //oneWire instance to communicate with any OneWire devices
DallasTemperature sensors(&oneWire);// Pass address of our oneWire instance to Dallas Temperature.
DeviceAddress Probe01 = { 0x28, 0x0F, 0x2A, 0x28, 0x00, 0x00, 0x80, 0x9F};
DeviceAddress Probe02 = { 0x28, 0x10, 0xA4, 0x57, 0x04, 0x00, 0x00, 0xA9};

// bmp180 stuff
Adafruit_BMP085 bmp;

void setup() {
  //I2C stuff
  Wire.pins(0, 2);
  Wire.begin(0, 2);
  // Initialize sensors
  //dht 11 stuff
  dht.begin();
  //ds18b20 stuff
  sensors.begin();//ds18b20
  // set the resolution to 10 bit (Can be 9 to 12 bits .. lower is faster)
  sensors.setResolution(Probe01, 10);
  sensors.setResolution(Probe02, 10);
  //bmp180 stuff
  if (!bmp.begin()) {
    //   Serial.println("No BMP180 / BMP085");
    //   while (1) {}
  }

  //OLED stuff
  display.init();
  display.flipScreenVertically();
  display.setFont(ArialMT_Plain_10);
  delay(1000);

  //  Connect to WiFi network
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
  }
}

void loop() {
  //ds18b20stuff-------------------
  sensors.requestTemperatures(); // Send the command to get temperatures
  temperature_buiten = sensors.getTempC(Probe01);//
  temperature_buiten2 = sensors.getTempC(Probe02);//
  //dht11 stuff--------------------
  float humidity = dht.readHumidity();
  float temperature = dht.readTemperature();
  if (isnan(humidity) || isnan(temperature)) {
    return;
  }
  //bmp stuff-------------------------
    String t= String(bmp.readTemperature());
    String p=String(bmp.readPressure());
  //OLED stuff--------------------------
  display.clear();
  display.drawString(0,10,p);//bmp pressure
  display.drawString(0,24,String(temperature_buiten));//ds18b20
  display.drawString(0,38,String(humidity));//dht11
  display.display();

  // make TCP connections
  WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
    return;
  }

  String url = "/update?key=";
  url += writeAPIKey;
  url += "&field1=";
  url += String(temperature);// roost (DHT1)
  url += "&field2=";
  url += String(humidity);// roost (DHT11)
  url += "&field3=";
  url += String(temperature_buiten);//coop temperature (DS18B20 nr 1)
  url += "&field4=";
  url += String(temperature_buiten2); //soil temperature (DS18B29 nr 2)
  url +="&field5=";
  url +=String(bmp.readTemperature());//Outside temperature (BMP180)
  url +="&field6=";
  url +=String(bmp.readPressure());// Airpressure (BMP180)
  url += "\r\n";

  // Send request to the server
  client.print(String("GET ") + url + " HTTP/1.1\r\n" +
               "Host: " + host + "\r\n" +
               "Connection: close\r\n\r\n");

  delay(1000);

}

Currently this program only monitors, but what is to stop you from adding a BH1750 I2C light sensor to measure if it is evening or morning or an RTC to know the time of day and to open and close the door of the coop automatically with aid of a PCF8574 I2C I/O expansion card, or as it is already in the garden, add a PCF8591 or ADS1115 AD converter to measure soil humidity and activate a pump when necessary. Or maybe switching on the water basin heater when the temperature falls below zero
if there is an I2 C chip for it, the ESP8266 can probably use it.

NOTE: the Adafruit DHT library contains an error that may show up in bigger programs on an 8266. If the majority of readings result in “failed to read”, it is time to comment out two erroneous lines in the DHT.cpp file as in the picture below:
adafruiterror

Adding an RTC and OLED to ESP8266-01

dsc_0024Adding an RTC and OLED to ESP8266-01 is fairly easy with I2C. The ESP8266-01 has 4 I/O pins that can be used for  I2C. using the GPIO0 and GPIO2 for sda resp scl is more or less standard.

esp8266-rtcoledI presume you do know how to program the ESP8266. In short: Connect Tx<->Rx (meaning the Tx of your ESP to the Rx of your USB-TTL converter)
Connect Rx<->Tx Connect CH_PD<->Vcc Connect GPIO0 <->Grnd
As both modules already had pull up resistors, I didnt need to add those. If your modules do not, add 4k7 resistors as pull up on the SDA and SCL lines.

/* ************************************
 Read the time from RTC and display on OLED
 with an ESP8266<br> sda=0, scl=2
* *************************************/

// Libraries
#include <Wire.h>
#include "SSD1306.h" // alias for `#include "SSD1306Wire.h"`
#include "RTClib.h" //  Lady Ada
//Object declarations
RTC_DS1307 rtc;            // RTC
SSD1306  display(0x3c, 0, 2);//0x3C being the usual address of the OLED

//Month and Day Arrays. Put in Language of your choice, omitt the 'day' part of the weekdays
char *maand[] =
{
  "Januari", "Februari", "Maart", "April", "Mei", "Juni", "Juli", "Augustus", "September", "Oktober", "November", "December"
};
char *dagen[] = {"Zon", "Maan", "Dins", "Woens", "Donder", "Vrij", "Zater" };


// date and time variables
byte m = 0;    // contains the minutes, refreshed each loop
byte h = 0;    // contains the hours, refreshed each loop
byte s = 0;    // contains the seconds, refreshed each loop
byte mo = 0;   // contains the month, refreshes each loop
int j = 0;     // contains the year, refreshed each loop
byte d = 0;    // contains the day (1-31)
byte dag = 0;  // contains day of week (0-6)

void setup() {
  Wire.pins(0, 2);// yes, see text
  Wire.begin(0,2);// 0=sda, 2=scl
  rtc.begin();

// reading of time here only necessary if you want to use it in setup
  DateTime now = rtc.now();
  dag = now.dayOfTheWeek();
  j = now.year();
  mo = now.month();
  d = now.day();
  h = now.hour();
  m = now.minute();
  s = now.second();
  DateTime compiled = DateTime(__DATE__, __TIME__);
  if (now.unixtime() < compiled.unixtime())
  {
    Serial.print(F("Current Unix time"));
    Serial.println(now.unixtime());
    Serial.print(F("Compiled Unix time"));
    Serial.println(compiled.unixtime());
    Serial.println("RTC is older than compile time! Updating");
    // following line sets the RTC to the date & time this sketch was compiled<br>   // uncomment to set the time
    // rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
  }

  // Initialise the display.
  display.init();
  display.flipScreenVertically();// flipping came in handy for me with regard 
                                                                // to screen position
  display.setFont(ArialMT_Plain_10);

}


void loop() {
  display.clear();
  DateTime now = rtc.now();
  dag = now.dayOfTheWeek();
  j = now.year();
  mo = now.month();
  d = now.day();
  h = now.hour();
  m = now.minute();
  s = now.second();

  display.setTextAlignment(TEXT_ALIGN_LEFT);
  display.setFont(ArialMT_Plain_16);
  String t = String(h) + ":" + String(m) + ":" + String(s);
  String t2 = String(d) + ":"  + String(mo) + ":" + String(j);
  display.drawString(0, 10, t);//
  display.drawString(0, 24, t2);
  display.drawString(0, 38, maand[mo - 1]);
  String d = dagen[dag];
  d = d + "dag";//adding the word 'dag' (=day)  to the names of the days
  display.drawString(0, 52, d);
  // write the buffer to the display
  display.display();
  delay(10);
}

The code is fairly straightforward but it does contain some peculiarities.
I make a call to ‘Wire.pins(sda,scl)’. That seems redundant and in fact the call was deprecated, but apparently if any other library would make a call to ‘Wire()’ the proper definition of the pins for the sda and scl can get lost. So I left them both in for safety.
If you still have an old RTCLib you may get an error on ‘dayOfTheWeek’. That is because it used to be called ‘dayOfWeek’ but it got changed: update your library.

The last line, with the day on it, may be just a bit too much size for your OLED: set the font smaller (say ‘Plain_10’) and alter the print positions (the second digits in the display.drawString(0, x, string); statements)

Reset a program from a ‘freeze’

While doing a test run on software for an incubator the software did fine, until suddenly on the ninth day weird things started to happen: the LCD showed some odd data and in spite of a low temperature the heating had not kicked in. I resetted the software, wondering what it could be but only an hour later again something off happened. This time in spite of the temperature being well over the upper limit, the heating was not switched off.
I checked my code, which really wasn’t so complicated: Read DSB1820, read DHT11, compare with high and low limit, switch a pin on or off and write the value to an LCD and I couldn’t find a single mistake and don’t forget, it had run flawlessly for 9 days. I suspected my display. This was a 20×4 LCD with I2C module with 4k7 pull up. Nevertheless there might still have been some ‘static’ on the SDA and SCL lines that supposedly can cause the Arduino to freeze.

Obviously that is not good if you are running an incubator as you dont want to check it and find your eggs boiled.
So, other than maybe straightening out the LCD cables a bit, I decided that I needed some software protection against ‘freezes’
The only (and possibly best) way to do this is with the watchdog timer. I dont want to go into the specifics and the background of the watchdog timer, but just keep it on a practical level.
What we do is to set-up the watchdog timer to initiate a system reset after say 4 seconds. Then in our loop we do a reset of the watchdog timer so it starts counting from zero again. So as long as the program tells the watchdog timer “I am still running” nothing will happen. Should the program freeze up, it will not reset the watchdog timer and then after 4 seconds the watchdog timer will reset the entire system.
It is very well possible to use the watchdog timer by manipulating the various registers yourself, but it is much simpler to use the watchdog libary that is part of the avr libraries.
We do this as follows:

#include <avr/wdt.h>

void setup()
{
	wdt_disable();
	//wdt_enable(WDTO_1S);// 1 sec
	wdt_enable(WDTO_2S);// 2 sec
	//wdt_enable(WDTO_4S);// 4 sec
	//wdt_enable(WDTO_8S);// 8 sec
}

void loop()
{
	wdt_reset();
	//  your program
	........
}

A capacitive soil humidity sensor: Part 3

Initially I imagined the probe as a sleek device with a wire coming out that one would stick in the soil, if necessary completely. This would mean that the circuit pcb would be an integral part of the PCB that  formed the plates, but as always, things go different in practice. For one thing , the piece of PCB I intended to use just wasnt long enough. Second, my PCB etching possibilites are temporarily impeded. Third, I wanted to add an LDR, meaning that I had to have some sort of  translucent cover.

I constructed the circuit on a small piece of stripboard:

IMG_20160225_163125 i2cprobe

With regard to the LDR, sure that is nonsense. If I want to add an LDR I  could just as well add it to my base station. But I am not adding it because I have to, I am adding it because I can and because I wanted to get some experience in programming an I2C slave. An LDR might not be so usefull but in future I may want another sensor, e.g.a sensor that reads if there is really water flowing from the irrigation tube.

Also I had decided on putting the capacitor plates back to back, but as I did not have double sided PCB I just used two pieces glued and  soldered(!) together.
So My BOM was rather simple:

  • 2 equal size pieces of PCB  Size depends on what you have, but do not make them too small. I used 12×3 cm.
  • 1 piece of 0.5-1.0 cm plastic for a baseboard. I used an old cutting board.
  • 1 clear/translucent cover, I used the lid of a whipped cream spray can.
  • 1 piece of  thin 4 wire cable, length depending on your need

pcbprobe2I glued the two piecesof pcb back to back. drilled a hole in all 4 corners and through soldered a piece of wire through each hole, thus anchoring the plates together. I removed some copper around the solder so it would become an island isolated from the rest of the plate. (See picture).

Soldering the plates together in the corners may not be necessary if you decide to electrically isolate them from the soil with e.g. shrink tube.

Eventually I will place an NTC on the plate as well after it is covered with Shrink tube. Esthetically it might be better to put the NTC under the shrink tube, but that could create an air pocket.

 

baseplateI made the base plate from a o.5 cm thick piece of soft plastic. Cut out a round shape  with a 5.5 cm diameter to fit the base of my  clear dome and  made a slit 3 x0.3 cm into that in which the PCB  fits snug. made a round hole for the connecting cable.

IMG_20160226_133820

 

 

I soldered two wires on the top of the PCB, one on each side. Soldered wires on an NTC, insulated those, attached the NTC to the bottom of the PCB with the wires leading to the top and then covered the PCB with shrink wrap.

probeEventually the probe looks like this (picture)probe3

 

A capacitive soil humidity sensor: Part 2

capacitive74HC14_attinyIn a previous article I presented a simple way to read a capacitive moisture sensor with a simple RC generator.
In this post I will present a sensor with some added functionality that can be read through I2C. The circuit (figure) doesnt need much explanation: the RC generator we saw in the previous article and the two variable resistors in a voltage divide read by analogue inputs. The Attiny 45 (NOTE, it is NOT an Attiny25) is the heart, or rather the brains of the sensor. As the Attiny  functions as an I2C slave we will need the TinyWireS library. The library comes with some examples and one example was quite easy to rework to what I needed. The code is as follows.

#define I2C_SLAVE_ADDRES 0x4
#include <TinyWireS.h>//https://github.com/rambo/TinyWire
#ifndef TWI_RX_BUFFER_SIZE
#define TWI_RX_BUFFER_SIZE ( 16 )
#endif

volatile uint8_t i2c_regs[] =
{
	0x00,
	0x00,
	0x00,
	0x00,
};
// Tracks the current register pointer position
volatile byte reg_position;
const byte reg_size = sizeof(i2c_regs);

byte LDRvalue;
byte NTCvalue;
int MoistPulse;

/**
 * This is called for each read request we receive, never put more than one byte of data (with TinyWireS.send) to the
 * send-buffer when using this callback
 */
void requestEvent()
{
	TinyWireS.send(i2c_regs[reg_position]);
	// Increment the reg position on each read, and loop back to zero
	reg_position++;
	if (reg_position >= reg_size)
	{
		reg_position = 0;
	}
}

/**
 * The I2C data received -handler
 *
 * This needs to complete before the next incoming transaction (start, data, restart/stop) on the bus does
 * so be quick, set flags for long running tasks to be called from the mainloop instead of running them directly,
 */
void receiveEvent(uint8_t howMany)
{
	if (howMany < 1) { // Sanity-check return; } if (howMany > TWI_RX_BUFFER_SIZE)
	{
		// Also insane number
		return;
	}

	reg_position = TinyWireS.receive();
	howMany--;
	if (!howMany)
	{
		// This write was only to set the buffer for next read
		return;
	}
	while(howMany--)
	{
		i2c_regs[reg_position] = TinyWireS.receive();
		reg_position++;
		if (reg_position >= reg_size)
		{
			reg_position = 0;
		}
	}
}


void setup()
{
	pinMode(1, INPUT);
	TinyWireS.begin(I2C_SLAVE_ADDRESS);
	TinyWireS.onReceive(receiveEvent);
	TinyWireS.onRequest(requestEvent);
}

void loop()
{
	readSensors();
	/**
	 * This is the only way we can detect stop condition (http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=984716&sid=82e9dc7299a8243b86cf7969dd41b5b5#984716)
	 * it needs to be called in a very tight loop in order not to miss any (REMINDER: Do *not* use delay() anywhere, use tws_delay() instead).
	 * It will call the function registered via TinyWireS.onReceive(); if there is data in the buffer on stop.
	 */
	TinyWireS_stop_check();
}

void readSensors()
{
	LDRvalue = (analogRead(A2)) >>2; // max value is 1023/4=255 is 1 byte (FF) physical pin3=PB4=A2
        i2c_regs[0] = LDRvalue;
	NTCvalue = (analogRead(A3)) >>2; // max value is 1023/4=255 is 1 byte (FF) pin2=PB3=A3
	i2c_regs[1] = NTCvalue;
	//pulsepin= pin6=PB1
	MoistPulse = pulseIn(1, HIGH);
	i2c_regs[2] = highByte(MoistPulse); // or use = MoistPulse >> 8;
	i2c_regs[3] = lowByte(MoistPulse); // or use = MoistPulse & 0xFF;
}

I have called the pulseIn function with an integer rather than with a long. This means that you will have to choose a value for R3 that gives a reasonable range for the type of soil that you use. A range of say 0-200 uS is very reasonable. Once you have done that you can also add a timeout to the pulseIn function. This should be abt 2 times the pulselength you expect (but depends on the duty cycle). With regard to the two variable resistors, they are in pull up so their value is Rntc = Rseries/((1023/ADC) – 1));  For the NTC this could be substituted in a Steinhart Hart approximation

The code to call the values (and that is loaded onto the master arduino) is even simpler:

#include <Wire.h>
void setup() {
  Wire.begin();        // join i2c bus (address optional for master)
  Serial.begin(9600);  // start serial for output
}

void loop() {
  for (byte i=0;i<4;++i){
  Serial.print("0x");
  Serial.println(readRegister(i),HEX); // print the character
}
Serial.println(" ");
    delay(1000);
  }

uint8_t readRegister(uint8_t regaddress)
{
	Wire.beginTransmission(4);
	Wire.write((byte)regaddress);
	Wire.endTransmission();
	Wire.requestFrom(4, 1);
	return Wire.read();


 delay(500);
}

This code only prints out the values, you still need to combine the LSB and MSB from the cycle time and e.g. switch a pump based on the value. You could do that with this function:

int combine (byte lsbv, byte msbv)
{
	int value = msbv << 8;
	value = value | lsbv;
	//value= msbv<<8 | lsvb;//if you want to do it in one go
	return value;
}

Don’ t forget that the I2C lines need pull-up resistors of 4.7-10k.

In a next article I will present the construction of the probe itself.