The HTU21D on an ESP8266-01, with MQTT and graphics

Limited as the ESP8266-01 might seem regarding the number of pins, it is still a very capable little device that is sometimes wrongfully underrated.

It is perfect however for projects that demand little I/O, such as reading a single sensor.

I am using the HTU21D temperature and humidity sensor. The ESP01 needs constructing a small board that contains the connectors and a small 1117-33 voltage regulator (soldered on the bottom) so the circuit can be fed with 5 Volt. As I am using an ESP8266-01S -that already has 10k pullups on GPIO0 and GPIO2, I do not have to add resistors for an undisturbed startup and use of I2C. If you are using the ‘old’  ESP8266-01, you have to add 4k7 -10k pullups to GPIO0 and GPIO2. If your HTU21 module already contains pullups, those will function as proper startup resistors as well.

The software (download here) is not too complicated, it first connects to your LAN, but it chooses the strongest of two LANs if available.

It then connects to an MQTT server and sends the sensor readings via MQTT every minute.

I also find it convenient when the software tells me what program it is, so I have added that too.

Finally, as in future I may want to include some time dependent signaling, I included a clock that is being synchronized through the internet.

Should you check your DHCP list, the device identifies as “HTU21”

MQTT Output:

Update
If you like a graphical presentation of your data, I have made another file that will exactly do that. It is based on code by Rui and Sara Santos from (randomnerdtutorials) that I discussed in an earlier  post. It will work with a 512k/32k SPIFFS setting as well as with a 1M/64k setting.
Beware though that many ESP8266-01 (and especially the ESP8266-01S) modules now come with a PUYA memory chip that has been causing some issues when using SPIFFS. The userdata.h file contains 2 defines that need to be set or commented out depending on whether you have or do not have the PUYA chip (2 defines to cover different cores). If you are still on the 2.4.1 core, you will need a patch. That you will have to put here: C:/Users/your.name/AppData/Local/Arduino15/packages/esp8266/hardware/esp8266/2.4.1/cores/esp8266.

Advertisements

Using the ESP8285 M3

Chinese webshops sell the ESP-M3. This is a tiny module containing an ESP8285. In short, an ESP8285 is like an ESP8266 but with 1Mb memory on chip. It is for instance the chip that has been used in the SonOff basic till now. The M3 is not a new module,it surfaced in 2016 and was primarily meant for wearables I think.

Sadly it is not really breadboard friendly. 6 pins have a 0.1″ pitch with throughholes, but 6 other pins have a 0.1″ pitch with edge-pads. The alignment between the through-hole and edge pins is hwoever not a standard 0.1″ pitch.
The module has the following pins.

ESP-M3 Compares with Wemos/NodeMCU
GPIO0 D3
GPIO1 Tx
GPIO2 (Tx1)(apparently connects to an onboard blue LED D4
GPIO3 Rx
GPIO4 (VSDA) D2
GPIO13 (Mosi) D7
GPIO14 (SCK) D5
GPIO16 D0
EN CH_PD
RST RST
Vcc Vcc
Gnd Gnd

The function of the pins is equal to that of the ESP8266. In comparison with the Wemos D1/ESP8266 (11 I/O pins, one ADC pin) the ESP-M3 has only 7 I/O pins, and no ADC. The ESP8285 HAS more pins than that, but these are not all broken out on the ESP-M3 module. All in all that is still 3 pins more than the ESP8266-01.

The use of the ESP-M3 is similar to that of the ESP8266. In order to go into Flash mode, the GPIO0 pin has to be made LOW. For ‘normal use’ the GPIO0 has to be pulled HIGH. The EN pin has to be pulled high. Choose 8285 board for upload.

void setup() {
pinMode(2, OUTPUT);
}

void loop() {
digitalWrite(2, HIGH);
// turn LED on 
delay(500);
digitalWrite(2, LOW);
// turn LED off
delay(500);
}

Simple WiFi relay board (3)


In an earlier post, I discussed how to quickly  make  a one channel WiFi relay with a relay module an ESP8266-01 and some Dupont cables.
In a later post, I showed how to make a 4 channel WiFi relay with an ESP8266-01 and a 4 channel relay board.

Both posts were a consequence of 2 videos by Ralph Bacon, discussing his slightly disappointing adventures with 2 commercially available Wifi relay boards, based on an ESP8266-01.
Out of interest I bought one of those boards -knowing the shortcomings Ralph pointed out- that I presumed I could fix.

The board comes with an ESP8266-01s. It has a Reset button, which isn’t really useful. The GPIO0 drives the relay through a 7002 FET, GPIO2 drives an LED and TX and Rx are not connected to anything.

The crux of this board is that it is really designed for the ESP8266-01S, although it can be made to work with the regular ESP8266-01. The ESP8266-01S is a version that already has pull-ups on GPIO0 and GPIO2, albeit that one of those pullups is through an onboard  LED. The regular ESP8266-01 does not have these pull ups and the relay board  does not provide them.

The relay module uses only one pin, GPIO0. It is connected to the gate of a 2007 FET that switches the relay and that is exactly where the problem starts. During startup, the ESP needs GPIO0 to be HIGH, unless you want to go to flash mode, when it needs to be LOW.
But as the ESP8266-01S correctly pulls pin GPIO0 HIGH, the relay will immediately be activated at startup. Hence he designer added a pull down resistor. Due to the presence of the Pull up on GPIO0 on the ESP8266-01 board, that needed to be a very strong pull down resistor and a 2k resistor was chosen. But now the GPIO0 pin is pulled LOW at startup, putting it in flash mode.

There are some simple solutions for this:

  • remove the 2k resistor. However this will activate the relay at start up.
  • reroute the triggersignal to  come from pin GPIO1 (Tx) or GPIO3 (Rx) (but you still need to remove the 2k resistor)

The latter solution is fairly simpel because of the long PCB trace going from GPIO0 to the gate of the FET

 

 

Simple WiFi relay board: a 4 channel DIY WiFi relay board (2)

Driving a 4 channel relay board with ESP8266-01 through MQTT


In a previous post I discussed making a WiFi relay inspired by the trouble  Ralph Bacon had with a single relayboard from Aliexpress. Given the fact that the Sonoff SV is relatively cheap (don’t forget the shipping cost though), and the WiFi relay at AliExpress even cheaper, it is a nickle and dime question whether it is wise to DIY such a project yourself. However, if you already have an unused ESP8266-01 and a relay lying around, basically all you need are some DuPont cables to connect the two (as shown in my previous post).

It becomes more interesting to use all 4 pins of an idle lying ESP8266-01 and add a 4 channel relay board.
The ESP8266-01 however is a bit particular with the pins it has,as two of the 4 I/O pins are the pins that need to be pulled HIGH on startup whereas the remaining two pins are the UART. Those UART pins can be used as GPIO, but the problem is that they do not know that, they need to be told that they are no longer UART but in fact GPIO. We do that with a special pinMode command (more about that later).

The relayboard I had in mind is a bit peculiar. I discussed the full workings of this board in an earlier post.

For now however suffice to say the inputs need an active LOW to  close the relays, while in rest, the inputs are HIGH.
That is in fact quite handy when using an ESP8266-01, as two of the 4 pins, GPIO0 and GPIO2, need to be pulled high on start-up, something this circuit actually does. It is necessary though to feed the board, including the optocoupler with 5Volt. The connections between the ESP8266-01 and the relay board are made as follows:

A reminder: the relayboard needs 5Volt and the ESP-01 needs 3.3Volt.  You could use an LDO like the AMS1117 3.3 to drop the 5Volt to 3.3 however,do not connect the two Vcc’s directly. Wait, let me emphasize that: DO NOT CONNECT THE Vcc OF THE ESP TO THE VCC OF THE RELAY BORD, JUST DONT!!!!

The full board
The ESP8266-01 adapter board

The program

For the program I followed the structure that is used by computourist with regard to the use of MQTT messages.
The idea behind that is that commands going from MQTT broker to the node are called ‘southbound’  (‘sb’), while the ones going to the broker (so usually the ‘ state’) are called ‘northbound’ (‘nb’). The specific functions in the node are addressed as numbered devices.
This has advantages and disadvantages. The disadvantage being that you get codes like: “home/sb/node01/dev17” rather than something like: “home/cmd/wifirelay/relay1“.
Also the handling of the incoming MQTT is bound to a specified length, so altering it needs to be done with some consideration.
The advantages are that the handling of the code is easier and in fact extending the code with more functions is fairly easy.
What happens in fact is that once a subscribed MQTT code comes in, it is stripped to a its last two digits. These digits define the function it fulfills.
The Payload can be “ON”, “OFF”, “READ”, or a number, depending on the function chosen. The “READ”  payload reads and returns the state of the specific function (‘device’)  that is being read. Some ‘devices’ -as for instance the IP number or the MAC address, can only be read and not ‘set’.

The full list of devices is as follows:
00 uptime: read uptime in minutes
01 interval: read/set transmission interval for push messages
02 RSSI: read WiFi signal strength
03 version: read software version
05 ACK: read/set acknowledge message after a ‘set’ request

10 IP: Read IP address
11 SSID: Read SSID
12 PW: Read Password

16 read/set relay1 output
17 read set relay2 output
18 read set relay3 output
19 read set relay4 output

92 error: tx only: device not supported
91 error: tx only: syntax error
99 wakeup: tx only: first message sent on node startup

As I mentioned earlier, the UART pins need to be told that they should behave like GPIO pins. That can be done with the statement:
pinMode(1,FUNCTION_3);
pinMode(3,FUNCTION_3);

However, this will not work when there are any hardware serial statements left (such as Serial.print, Serial.begin)
So in order to control the relays from e.g. OpenHAB, this is what you add to your itemsfile:

Switch rel1 "WiFi relay 1 [%s]" (GF_Corridor) { mqtt="[mosquitto:home/sb/node01/dev17:command:*:default]" }
Switch rel2 "WiFi relay 2 [%s]" (GF_Corridor) { mqtt="[mosquitto:home/sb/node01/dev18:command:*:default]" }
Switch rel3 "WiFi relay 3 [%s]" (GF_Corridor) { mqtt="[mosquitto:home/sb/node01/dev19:command:*:default]" }
Switch rel4 "WiFi relay 4 [%s]" (GF_Corridor) { mqtt="[mosquitto:home/sb/node01/dev16:command:*:default]" }

this will render the following menu:

The program can be downloaded here. FYI, I trimmed down an existing, bigger program of mine. I left a bit of code here and there that might not be of immediate use in this project, but may come in handy if you want to use the code on a Wemos.
Cost:

  • relayboard 1.80 euro
  • ESP8266-01 1.45 euro
  • 5 and 3.3Volt module 0.40ct

If you are using a different relay board that does not have it’s inputs pulled high in rest, then you need to add 10k pull-ups on GPIO 0 and GPIO2

Simple WiFi relay board: an overview (1)

In his video nr 107 youtuber Ralph Bacon describes his ‘frustration’ with an ESP8266-01 based wireless relay he got from AliExpress.

Wifi relay with ESP8266-01 and STC15F104 microprocessor

His frustration is understandable as that particular module is needlessly complicated. It seems the ESP8266-01 is mainly there to make the WiFi connection, while the relay is triggered by yet another microprocessor, the STC15F104. Communication between the two is via the serial port of the ESP8266, as if the designers thought, how can we make this in the dumbest way possible.
If you want to use this relay, this is how to do it:

Set the serialport to 9600 with : Serial.begin(9600);

To enable the Relay send the proper command bytes to serial port:

const byte ReBufferON[] = {0xA0, 0x01, 0x01, 0xA2};
Serial.write(ReBufferON, sizeof(ReBufferON));

To disable the Relay send the following bytes to the serial port:
const byte reBufferOFF[] = {0xA0, 0x01, 0x00, 0xA1};
Serial.write(ReBufferON, sizeof(ReBufferOFF));

Apparently it will also work with AT commands.

The circuit looks like this

###

An even simpler board

The ‘simple’ relay board

In his follow up video # 110  Ralph describes another, simpler relay board (pictured), that also frustrated him as the manufacturer apparently had not included the necessary pull-up resistors on the Chip Enable and on GPIO0 and GPIO2. (Edit: this turned out not to be entirely true as the board comes with an ESP8266-01S that has the necessary pullups on board)

Both videos came in my focus again, when i discussed the ‘simpler’ board with a diy mate and frequent commenter. It is very cheap to buy and once you add the resistors (to make it start up correctly) factually you have a Sonoff SV.
Ofcourse the Sonoff SV is less than 5 Euro (plus shipping), as opposed to the ‘brandless’ relay board only costing some 2.60 euro, so you might as well get the real thing, but it opens some interesting perspectives, especially as I had most of the stuff laying around namely an ESP8266-01 a relay module and a 3.3Volt power module, all fairly cheap. Just a couple of DuPont cables to connect the three, and it should be fine. I know it is all nickles & dimes stuff but lets do a quick calculation.

Total 2.08 euro as opposed to 2.62 euro (in a nicer package), so not really cost effective to ‘DIY’  but if you have the stuff laying around, better to use it than for it gather dust. It also allows you to choose another pin than GPIO2 to drive the relay.
Ralph also offers a program to replace the existing firmware in the ESP8266, as well as a phone app (all found in the description of his video). Ofcourse it is also possible to replace the firmware with MQTT responsive firmware. For that you could e.g. use my Sonoff Touch program, albeit that in line 17, you have to change “TouchLED=12;”  to “TouchLED=2;

But why stop there? the ESP8266-01 has 4 I/O pins, if we ad a small 220->5V power module and a 4 channel relay board, we could make a sonoff 4ch. These cost about 22 Euro. So that would be more rewarding to build.
That however will be for part 2.

Flashing Sonoff Touch – No soldering

Although it is not really a big thing to solder an angled header in a SonOff Touch in order to reprogram it, one also has to solder a wire to the GPIO-0 pin of the ESP8285 chip as the SonOff Touch has no button that can be used to get it into flash mode.
I therefore wondered if it wouldn’t be possible to flash the Sonoff Touch without any soldering. Spoiler: yes it is possible, but you need some dexterity.
First open the Sonoff Touch. This is easiest done with cautiously prying a screwdriver on between the casing and the frontplate at the side.
once that is done you can see a small board that you can just pull-out.
On that board there are 4 in line holes that we need to connect an FTDI programmer to. On the bottom side of the board is also a 2×2 male header. That is the one that we just pulled out of its header in the housing. We are going to need that header a bit later as well.

indicated  the function of the 1×4 header in the image. You are going to need an FTDI to USB module  THAT YOU CAN SET TO 3.3 VOLT. You also will need a 1×4  straight pinheader and 4 female to female DuPont wires.
Now make the following connection between the 1×4 male header and the FTDI to USB connector:

header FTDI module
Ground Ground
Tx Rx
Rx Tx
Vcc Vcc

To make clear, if it already wasn’t, this is a connection to a loose, 4 pin male header.
The next thing you need is a female to male DuPont cable. Connect the female end to the ground connection on the 2×2 header.

Also, you need to identify GPIO0 on the ESP8285 chip:

 

For the final flashing you need a bit of dexterity but this is what you do:

  • Have your Arduino IDE available with the  required program loaded.
  • Under tools-boards choose the generic 8285 module
  • Flash size 1 Mbyte 16k SPIFFS
  • Make sure the FTDI module is not connected to the USB port of your computer.
  • Now press the 4 pin male header that is connected to your FTDI module in the proper holes. Make sure it is the right way around, so Ground connects to ground, Vcc to Vcc, Rx to Tx and Tx to Rx. If there is a bit of slack between the header and the holes. push against the pins with  the mouse of yr thumb or with your little finger, so it makes  poper connection.
  • Now take the male pin of the DuPont cable that you connected to the ground on the 2×2 pin header and push it against GPIO 0.
    Keep it in place with your thumb.
  • You still should have one hand free. Use that to push the FTDI module in the USB connection of your computer.
  • Once that is done, you can let go of the male pin pressed against GPIO0
  • In the IDE chose the right port and press ‘upload’.

That’s it.

So, what program should you upload to make the Sonof Touch work?
Of course there is Tasmota and many people are very happy with it. Truthfully, I found it cumbersome and couldn’t even compile it. Considering all we need to do is switch 1 pin, it shouldn’t be so hard to write something simple.
Given the fact that the Sonoff Touch will most likely disappear in the wall and you don’t want to have to take it out and flash it again, two things come in very handy in the program:

  • OTA (Over The Air) flashing
  • WiFiManager

The code also gives MQTT feedback about the

  • MAC
  • IP
  • Filename
  • SignalStrength

It can be downloaded here

Battery fed Deepsleep Weatherstation revisited

After my previous publication of a battery fed weatherstation, I exchanged ideas with one of the commenters about ways the improve the energy efficiency of the circuit.

One doesn’t need to be a rocketscientist for that:
Ditch the batteryshield as it is very inefficient
Ditch the DHT22 as that constantly uses 2.5mA
Ditch the Wemos as even while it is in deep sleep the CH340 chip on the board isn’t. (it drains 200uA)
Ditch the voltage divider used to monitor the battery voltage (it drains 10uA).
Also ditch the BMP280 as it cannot measure humidity.

So what we will be doing is use a bare ESP8266-12F  and a BME280 as that can measure humidity as well as temperature and airpressure.
Feed with alkaline cells, omitting the need for an LDO. That way the voltage can be measured directly from Vcc/Vbatt without the need of a voltage divider

So, a new circuit starts to evolve:

Obviously that needs a bit more soldering than just using a Wemos and battery shield, but in essence one only needs to add the resistors to put the necessary pins HIGH (pins 0, 2 and CH_PO) or LOW (pin 15). There are however  various baseplates  for the ESP8266-12F that have these resistors already present. The  capacitor is  there to give some extra boost when the ESP is busy connecting to a network.

In order to minimize the poweruse of the BME280, one has to use some special settings. Normally the BME280 constantly is taking readings of its sensors. Not only does that take more power, but I noticed it can also drive up the temperature of the chip, influencing the temperature reading.
The mode to use it in is  the so called Forced Mode: it will only take a reading when told to do so.
Now mind you, even if you don’t tell it to take a reading, the library will still give you a result as that gets its values from a register, but it will always be the same value, you will need to tell the chip it has to store a new value in that register.

The datasheet suggests 4 different possibilities of ‘Forced mode’:

  • Weather station scenario
  • Humidity scenario
  • Indoor Navigation
  • Gaming

We obviously will be taking the first one.
The software can be downloaded here

While in sleep this should draw 80uA
Now suppose we have a 2000mAh battery then the circuit could run 25000 hour=1042 days=2.85 years =2 years, 10 months and a week
Now obviously that is a bit of a simplification as the full power of the battery might not be available within the 4.2<->3.0 Volt slot and ofcourse the circuit is using more current when not asleep, so lets recalculate:
Though larger peaks exist, the average current drawn during connection is some 85mA. So suppose that we have a 3 second connection and 15 (900sec) min of sleep
The current consumption is then as follows 3x85mA+900x80uA=255+72=327mAs, so over an hour it consumes 1308mAs and during a day 31392mAs. So every day that is 8.72mAh. A 2000mAh battery then gives 229 days=7.6 months.